If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+54x=0
a = 16; b = 54; c = 0;
Δ = b2-4ac
Δ = 542-4·16·0
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-54}{2*16}=\frac{-108}{32} =-3+3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+54}{2*16}=\frac{0}{32} =0 $
| (2x-7)+(6x-2)+(x)=180 | | -5(x-16)=-40 | | x^3=0.72 | | -10=-20-5g | | 8-3(4-9x)=x | | X-6/x+5=x+5/x-6 | | x+29=1+29 | | 72=2x+(x+4) | | 9x-3=(3x+15) | | -22130=1200-65b | | 3.5^x=0.5 | | (30-y)y=216 | | 1.1+3/4+2=3.1+3/4x | | V+6v=65 | | -9x+40=284 | | 18=11x-8x | | 9^(5x)=243^(3x-2) | | 9^(5x)=243^(3x-2) | | 4x-2=(3x+9) | | -3x/2+(9x+12)/6=6x/15+(4x+2)/3 | | b/8-20=105 | | 1+.80m=52+.75m | | -2x=-157 | | v/5-18=12 | | 56(69x(58+12x))=580x | | 3xX4x=180 | | 56(69x(58+12x))=580 | | 30304x=5336 | | 6x=3800 | | x9+6=52 | | -2/5(-15/4x)+1/2=x-2 | | 4^3x-1=7^2x+3 |